Particle Filtered MCMC-MLE with Connections to Contrastive Divergence

نویسندگان

  • Arthur U. Asuncion
  • Qiang Liu
  • Alexander T. Ihler
  • Padhraic Smyth
چکیده

Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn these models exactly, various approximate learning techniques have been developed, such as contrastive divergence (CD) and Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE). In this paper, we introduce particle filtered MCMC-MLE, which is a sampling-importanceresampling version of MCMC-MLE with additional MCMC rejuvenation steps. We also describe a unified view of (1) MCMC-MLE, (2) our particle filtering approach, and (3) a stochastic approximation procedure known as persistent contrastive divergence. We show how these approaches are related to each other and discuss the relative merits of each approach. Empirical results on various undirected models demonstrate that the particle filtering technique we propose in this paper can significantly outperform MCMC-MLE. Furthermore, in certain cases, the proposed technique is faster than persistent CD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models

Exponential-family models for dependent data have applications in a wide variety of areas, but the dependence often results in an intractable likelihood, requiring either analytic approximation or MCMC-based techniques to fit, the latter requiring an initial parameter configuration to seed their simulations. A poor value can lead to slow convergence or outright failure. The approximate techniqu...

متن کامل

Learning Deep Energy Models: Contrastive Divergence vs. Amortized MLE

We propose a number of new algorithms for learning deep energy models from data motivated by a recent Stein variational gradient descent (SVGD) algorithm, including a Stein contrastive divergence (SteinCD) that integrates CD with SVGD based on their theoretical connections, and a SteinGAN that trains an auxiliary generator to generate the negative samples in maximum likelihood estimation (MLE)....

متن کامل

Differential Contrastive Divergence

We formulate a differential version of contrastive divergence for continuous configuration spaces by considering a limit of MCMC processes in which the proposal distribution becomes infinitesimal. This leads to a deterministic differential contrastive divergence update — one in which no stochastic sampling is required. We prove convergence of differential contrastive divergence in general and p...

متن کامل

Learning Multi-grid Generative ConvNets by Minimal Contrastive Divergence

This paper proposes a minimal contrastive divergence method for learning energy-based generative ConvNet models of images at multiple grids (or scales) simultaneously. For each grid, we learn an energy-based probabilistic model where the energy function is defined by a bottom-up convolutional neural network (ConvNet or CNN). Learning such a model requires generating synthesized examples from th...

متن کامل

Why (and When and How) Contrastive Divergence Works

Contrastive divergence (CD) is a promising method of inference in high dimensional distributions with intractable normalizing constants, however, the theoretical foundations justifying its use are somewhat weak. This document proposes a framework for understanding CD inference, including how and when it works. It provides multiple justifications for the CD moment conditions, including framing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010